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Abstract. We introduce the Upgrading Shortest Paths Problem, a new
combinatorial problem for improving network connectivity with a wide
range of applications from multicast communication to wildlife habitat
conservation. We define the problem in terms of a network with node
delays and a set of node upgrade actions, each associated with a cost and
an upgraded (reduced) node delay. The goal is to choose a set of upgrade
actions to minimize the shortest delay paths between demand pairs of
terminals in the network, subject to a budget constraint. We show that
this problem is NP-hard. We describe and test two greedy algorithms
against an exact algorithm on synthetic data and on a real-world instance
from wildlife habitat conservation. While the greedy algorithms can do
arbitrarily poorly in the worst case, they perform fairly well in practice.
For most of the instances, taking the better of the two greedy solutions
accomplishes within 5% of optimal on our benchmarks.

1 Introduction

Many applications in areas as diverse as VLSI circuit design, QoS routing, and
traffic engineering involve designing networks under constrained shortest paths
and budget limits. For example, in a transportation network, a key goal is to
connect major cities via short routes to better serve the bulk of the traffic. In
a multicast communication setting where a single node is broadcasting to a set
of subscribers, it is important to minimize the latency, or the shortest path
delays between the source node and all the subscribers. In wildlife conservation,
our motivating application from computational sustainability [8], the landscape
connectivity between important habitat patches is measured as the length of the
shortest path in terms of landscape resistance to animal movement. Maintaining
good landscape connectivity, i.e. short resistance paths, is key to resilient wildlife
populations in an increasingly fragmented habitat matrix.

In this work, we introduce a new general network improvement problem rele-
vant in such settings. The problem is defined with respect to a network with node
delays where the delay between a pair of nodes is the shortest path delay in the
network, while the overall delay of the network is measured as the average delay
among a designated set of node pairs. Given a set of node upgrade actions with
respective costs and upgraded node delays, we seek to choose the best possible
upgrade strategy in terms of minimizing total upgrade cost and resulting overall
network delay. We refer to this problem as the Upgrading Shortest Paths Prob-
lem. We consider two optimization settings. In the budget-constrained setting,



the goal is to find an upgrade strategy such that the total upgrade cost does
not exceed a given budget B, and the resulting upgraded network has minimum
overall delay over all possible strategies which obey the budget constraint. On
the other hand, in the delay-constrained setting, the goal is to find a minimum-
cost set of nodes to be upgraded so that the overall delay in the resulting network
meets a given bound D.

Some network improvement problems have been studied previously. In par-
ticular, most of the previous work has concentrated on the edge-delay variant
where either edges can be upgraded directly, or nodes are to be upgraded, ef-
fectively upgrading all the edges incident to the upgraded nodes. Many of the
studies assume a particular relationship between the delays and the upgraded
delays. For example, if a node v is upgraded, then the delay of each edge incident
to v reduces by a factor x where 0 ≤ x < 1, and if both endpoints of an edge
are upgraded, then its delay reduces by a factor of x2. Paik et al. [15] introduce
several NP-hard network improvement problems under this upgrade model and
unit costs, including the minimum-cost network improvement problem subject
to a maximum delay constraint over all pairs of nodes in graph. Krumke [11]
studies a similar network improvement problem but the constraint is on the total
delay of the minimum spanning tree of the resulted upgraded network.

Although the edge-delay setting has been studied more than its node coun-
terpart, placing the delays on the nodes can be more appropriate in certain
applications. For example, in telecommunications, expensive equipment such as
routers and switches are at the nodes of the underlying network. Unfortunately,
while one can easily reduce an edge-weighted version to a node-weighted version,
the reverse does not usually hold for undirected graphs, and hence it is desirable
to work directly on node-weighted problems in undirected graphs. In this work,
we address the more general node-weighted variant.

Landscape Connectivity

Although the network optimization problem considered here is very general, the
main motivating application for our work is in Conservation Planning.

Habitat fragmentation is one of the principal threats to biodiversity. The
focus of much ecology research is to quantify landscape connectivity [17], a mea-
sure of the degree to which the landscape facilitates or impedes movement among
habitat patches. The landscape is represented as a set of small parcels or pix-
els, each of which has a resistance value that gives the species-specific cost of
moving through particular landscape features. Resistance models are inferred by
relating landscape characteristics to genetic distance between individuals at dif-
ferent locations [4] or to radio-collar movement data. Under the Least-Cost Path
model, the connectivity between two designated habitat patches is measured as
the length of the shortest resistance-weighted path between them [16].

Preserving and restoring connectivity for broad-scale ecological processes,
such as dispersal and gene flow, has become a major conservation priority [3].
While conservation biology has historically set conservation objectives and plans



irrespective of their cost, multiple studies in recent years have shown that sys-
tematic conservation planning is the right approach. It is possible to achieve
conservation objectives at a fraction of the cost (or achieve higher targets for
the same cost) if the conservation and management costs are formally considered
at the outset of the planning process [10,13]. Decision-support tools to design ef-
ficient budget-constrained conservation strategies are needed and yet still largely
lacking.

By reducing the problem of maximizing landscape connectivity to the Up-
grading Shortest Paths problem, we provide conservation planners with a tool
to evaluate trade offs between costs and connectivity benefits as well as gen-
erate conservation plans with formal optimality guarantees. In particular, we
can model the pixels or parcels of land as nodes in the graph, and edges are
drawn between parcels that share boundaries. The resistance of each parcel is
the corresponding node delay, and its upgraded delay is the predicted effective
resistance of the parcel if it were under conservation management. Given pairs
of important habitat patches (i.e. existing conserved areas or subpopulations),
solving the combinatorial optimization problem designs a conservation strategy
that maximizes the resulting landscape connectivity.

Recently, the related problem of Wildlife Corridor Design was studied in
[2,5,9]. In the optimization model used for designing wildlife corridors, the goal
is to maximize the total utility of the set of bought parcels while ensuring that
the parcels connect a designated set of reserves and that the total cost does not
exceed a specified budget. By enforcing connectivity of the purchased parcels, it
in effect pessimistically assumes that any land parcel that is not bought for the
wildlife corridor is no longer usable by the wildlife. In reality, choosing not to
buy a piece of land may not significantly impact whether wildlife will still be able
to use the land. In the landscape connectivity conservation problem discussed in
this work, each land parcel may contribute to the connectivity of the terminals,
whether or not it has been bought. The benefit of buying a piece of land is
reflected by decreasing the land’s effective resistance.

Our Contributions

In this paper, we introduce the Upgrading Shortest Paths problem, a new com-
binatorial problem for improving network connectivity in many real-world ap-
plications. We show that this problem is NP-hard. We give a formulation of the
problem as a multicommodity flow mixed integer program for solving it to op-
timality, as well as two fast greedy algorithms. We tested these approaches on
various synthetically generated planar graph instances and a real-world instance
from conservation planning, and we found that our MIP formulation scales sur-
prisingly well to instances with hundreds of nodes. While the greedy algorithms
can perform arbitrarily badly even in planar graphs, they performed fairly well,
coming within 5% of optimal on most of these test instances. One interesting
phenomenon we observed is that the hardness of the instances is very much cor-
related with the nature and magnitude of the generated upgraded delay values
for the nodes. Changes in node delays that were large in magnitude and varying



greatly from node to node resulted in longer running times for the MIP and
larger optimality gaps for the greedy algorithms.

The paper is organized as follows. First, we formally define the Upgrading
Shortest Paths Problem. Second, we characterize its computational complexity.
Third, we describe the three solution approaches. Finally, in the experiments
section we study their typical case behavior on a synthetic dataset and present
results for an instance derived from a real conservation planning setting.

2 The Upgrading Shortest Paths Problem

2.1 Problem Definition

We can define an instance of the decision version of the Upgrading Shortest
Paths (USP) problem as follows.

Definition 1 (The Upgrading Shortest Paths Problem).

Given: an undirected graph G = (V,E), a set of terminal pairs P ⊆ V × V ,
a cost function on the nodes c : V → R

+, a delay function d : V → R
+, a

delay function d′ : V → R
+ where d′(v) ≤ d(v) for all v ∈ V , a budget value

B ≥ 0, and a delay value D ≥ 0.
Find: a set of nodes V ′ ⊆ V such that

∑
v∈V ′ cv ≤ B, and the average shortest

path for pairs in P is at most D when evaluated under the effective delays:

d̂(v) =

{
d′(v) if v ∈ V ′

d(v) otherwise
(1)

For convenience, we also define T to be the set of all terminals, or set of
nodes that appear in at least one pair p ∈ P . We can also define the following
two variations of the USP problem.

Definition 2 (Budget-constrained USP Problem). The delay value D is
not given as an input, and the objective is to find a set of nodes V ′ ⊆ V such
that

∑
v∈V ′ cv ≤ B, and the average shortest path for pairs in P is minimized.

Definition 3 (Delay-constrained USP Problem). The budget value B is
not given as an input, and the objective is to find a set of nodes V ′ ⊆ V such
that the average shortest path for pairs in P is at most D, and the total cost∑

v∈V ′ cv is minimized.

2.2 Computational Complexity

We now show that the two variants of the USP problem are NP-hard.

Theorem 1. The budget-constrained Upgrading Shortest Paths Problem is NP-
hard.



Proof. To show that budget-constrained USP is NP-hard, we use a reduction
from the knapsack problem which is NP-hard [7]. In a knapsack instance, we are
given items indexed {1, . . . , n} with sizes {c1, . . . , cn} and values {d1, . . . , dn}.
The goal is to find some subset S that maximizes

∑
i∈S di subject to the con-

straint that
∑

i∈S ci ≤ B, where B is the capacity of the knapsack.
Let G be a path graph with endpoints s and t, and n interior points vi,

one for each item in the knapsack instance. Note that the only shortest path
between s and t is the entire path. We can now construct a USP instance with
the graph G, one terminal pair (s, t), and a budget value of B. The nodes s
and t have zero cost and delay. Each intermediate node vi has cost ci, delay di,
and upgraded delay of 0. We can now map a set of items S exactly to the set
of nodes in G that represent them, and this set of nodes has total cost

∑
i∈S ci

and improves the total shortest path length by
∑

i∈S di when bought. Since
the optimal solution to the USP instance minimizes the shortest path length
while satisfying the budget constraint, it in effect finds the set of nodes with the
maximum total decrease in delay, thus exactly solving the knapsack instance.
Therefore, the budget-constrained USP is NP-hard. Instances that involve more
complicated graphs than a simple path graph can be viewed as having multiple
knapsack instances to choose from, and instances with more than one demand
pair may have overlapping knapsack instances where items are bought once but
may contribute to multiple knapsacks.

Theorem 2. The delay-constrained USP problem is NP-hard and can only be
approximated within an Ω(log |V |) factor unless P=NP.

Proof. To show this result directly, we use a reduction from set cover which has
the same hardness results [1]. In a set cover instance, we are given a universe
of elements U = {1, . . . , n}, a family S of candidate sets Sj each of which has
a cost cj . The goal is to find a family of sets C ⊆ S such that they cover all of
the elements, i.e. ∪S∈CS = U , and such that the total cost of the sets in C is
minimized. We can construct a USP instance where there is a zero-delay node vi
for each element i in U , and the terminal pairs set P is composed of all pairs of
these nodes. Each set Sj is similarly represented by a node uj with delay 1, cost
cj and upgraded delay 0. Each node uj is connected to the nodes vi for which
i ∈ Sj as well as every other node uk. Thus the shortest path delay between any
two distinct nodes is at least 1, and upgrading a set of nodes uj such that every
node vi is adjacent to at least one of these nodes decreases all of the delays to 0.
Thus if we set the target average delay D to 0 and minimize the cost necessary
to achieve this delay, we are exactly solving the set cover problem, and the cost
of the nodes in the optimal solution is equal to the cost of the sets in the set
cover instance.

3 Solution Methods

In this section, we present an exact method for solving the two variations of
the USP problem using a MIP formulation as well as two greedy algorithms for



the budget-constrained variation. To evaluate the quality of an approximation
algorithm or a heuristic, it is standard to calculate the optimality gap of a
solution by taking the difference between the approximate and exact solutions
and dividing this result by the optimal value. However, this is a problematic
and uninformative measure for the budget-constrained problem. For example, if
the best upgraded shortest paths all have delay 0 and a heuristic finds a nearly-
optimal solution of average delay ε, the heuristic still has an infinite optimality
gap. For the sake of evaluating the performance of our solution methods, for the
rest of this paper we will regard the objective function for the budget-constrained
problem as maximizing the improvement in the average shortest path delay.

For all of the methods we present, we can prune the search space by elim-
inating all nodes v ∈ V for which upgrading the node will never improve the
delay between any terminal pair in P . To find these nodes, we first calculate
single-source shortest paths from each terminal to the rest of the nodes in both
the graph with no upgrades and the graph with all nodes upgraded. A node v
will never improve the delay for a terminal pair p if the shortest path for p with
no upgrades is shorter than the shortest possible path passing through v in the
fully upgraded graph. If this condition holds for all terminal pairs, then under
no upgrade strategy would v ever improve the objective, and hence we can safely
prune it.

3.1 Mixed Integer Programming

We can solve the Upgrading Shortest Paths problem exactly by formulating it
as a mixed integer program (MIP). We use a multicommodity flow formulation
for computing the shortest delay path for each terminal pair p = (s, t) ∈ P .
For this formulation, we transform the given undirected graph G to a directed
graph G′ where delays now appear on the edges instead of the nodes. Each node
v in the graph is replaced by two nodes, the “in” node v− and the “out” node
v+, that are then connected with two parallel edges directed from v− to v+.
We refer to these edges as the “original node edge” ev and the “upgraded node
edge” e′v, and their delays are set to the original and upgraded delays of the node
v, respectively. Each undirected edge {u, v} in the graph becomes two directed
edges (u+, v−) and (v+, u−) with delay 0. See Figure 1 for an example of an
edge in G and its corresponding subgraph in G′. We can now state the flow
formulation for the constructed graph G′.

We now describe the variables used in our formulation:

– xv: binary variable indicating whether node v ∈ V is to be upgraded.
– cost: the total cost of all upgraded nodes.
– fpe: continuous variable indicating the flow of commodity p on edge e,

i.e. whether edge e is chosen to be on the shortest path for the terminal
pair p.

– fpv: continuous variable indicating the flow of commodity p on edge ev. In
an integral solution, this indicates whether the original node v is chosen to
be on the shortest path for the terminal pair p.



v− v+u+u− 0

0

du

d′u

dv

d′v

Fig. 1. The representation of nodes u, v, and an undirected edge between them in the
new directed graph G′. The delay of each edge is labeled.

– f ′
pv: continuous variable indicating the flow of commodity p on edge e′v. In
an integral solution, this indicates whether the upgraded node v is chosen to
be on the shortest path for the terminal pair p.

– delayp: variable for the effective shortest path delay for terminal pair p.

– avgdelay: variable for the delay over all terminal pairs.

The full MIP for the budget-constrained problem is shown in Equations (2)-
(18). The delay-constrained MIP is a simple modification of this MIP where the
objective function minimizes cost instead, and Constraint (16) is replaced by the
constraint avgdelay ≤ D. We use Constraints (3)-(10) to model each terminal
pair’s shortest delay path as a multicommodity flow problem. For each terminal
pair (s, t), Constraints (3)-(8) force the nodes s and t to be the source and sink
of one unit of flow, respectively. We use δ−(v−) to indicate the set of incoming
edges to the node v− and δ+(v+) to indicate the set of outgoing edges from node
v+. The next constraints (9)-(10) enforce flow conservation through the rest of
the nodes in the graph. The total delay for a terminal pair p is equal to the sum
of delays of each edge e, scaled by the flow fpe going through it (Constraint (13)).

Constraints (11)-(12) ensure that if a node v is chosen to be upgraded, only
the upgraded node edge e′v can carry flow; the original node edge ev is not to
be used. Similarly, if a node v is not chosen to be upgraded, only the original
node edge ev can be used to carry flow. Constraints (14) and (15) compute the
total cost of the upgraded nodes and the average delay of all terminal pairs,
respectively. Constraint (17) enforces that the upgrade decision variables are
binary, and Constraint (18) enforces that the flow variables are all non-negative.



min avgdelay (2)

s.t. fps + f ′
ps = 1 ∀p = (s, t) ∈ P (3)∑

e∈δ−(s−)

fpe = 0 ∀p = (s, t) ∈ P (4)

fps + f ′
ps =

∑
e∈δ+(s+)

fpe ∀p = (s, t) ∈ P (5)

fpt + f ′
pt = 1 ∀p = (s, t) ∈ P (6)∑

e∈δ−(t−)

fpe = fpt + f ′
pt ∀p = (s, t) ∈ P (7)

0 =
∑

e∈δ+(t+)

fpe ∀p = (s, t) ∈ P (8)

∑
e∈δ−(v−)

fpe = fpv + f ′
pv ∀p = (s, t) ∈ P, ∀v 	= s, t ∈ V (9)

fpv + f ′
pv =

∑
e∈δ+(v+)

fpe ∀p = (s, t) ∈ P, ∀v 	= s, t ∈ V (10)

f ′
pv ≤ xv ∀p = (s, t) ∈ P, ∀v 	= s, t ∈ V (11)

fpv ≤ 1− xv ∀p = (s, t) ∈ P, ∀v 	= s, t ∈ V (12)

delayp =
∑
v∈V

[d(v)fpv + d′(v)f ′
pv ] ∀p ∈ P (13)

cost =
∑
v∈V

c(v)xv (14)

avgdelay =
1

|P |
∑
p∈P

delayp (15)

cost ≤ B (16)

xv ∈ {0, 1} ∀v ∈ V (17)

fpe, fpv, f
′
pv ≥ 0 ∀p ∈ P, e ∈ E, v ∈ V (18)

For both of the minimization problems, we implement pruning by setting
xv = 0 for all nodes v ∈ V for which upgrading the node will never improve the
delay between any terminal pair in P . For each node v that will never improve
the delay for some particular pair p ∈ P , we add the constraint f ′

pv = 0.

3.2 A Naive Greedy Algorithm

One naive approach for the budget-constrained USP problem is to take the
current shortest paths between terminal pairs and upgrade them as much as
possible. This cuts down on the search space a great deal. Intuitively, the greedy



algorithm sorts the nodes in decreasing order by their heuristic value and at-
tempts to upgrade each node in the list with what is left of the budget. To
define the value for each node, the greedy algorithm first sets the values of every
node to 0. Then, for each pair of terminals p = (s, t), it adds (d(v)− d′(v))/c(v)
to the value of each node v on the shortest path between s and t. The total
running time is that of running Dijkstra’s shortest paths algorithm from each
terminal, sorting the eligible nodes, and adding them in linear time. In total this
algorithm takes O(|T |(|E|+ |V | log |V |)) time, where T = {t : ∃(s, t) ∈ P} is the
set of terminals that show up in some terminal pair.

A similar alternative to the way this heuristic cuts down on its search space
is to consider only the nodes on the shortest paths that would exist if the entire
graph were upgraded; these are the best possible paths if the budget were infinite.
It is a simple matter to run both heuristics and take the better result; we will call
this combined approach the Naive Greedy algorithm. As with many heuristics,
this algorithm does not have a provable guarantee. In fact, it can do arbitrarily
poorly as shown in the example in Figure 2.

s t

c(v1) = 0 c(v2) = B
d(v1) = 1 d(v2) = 2
d′(v1) = 1 d′(v2) = ε

c(v3) = 2B
d(v3) = 2
d′(v3) = 0v3

v2

v1

Fig. 2. In this example, the naive greedy algorithm will only examine the nodes v1 and
v3 since they are part of the current and best possible paths. Under a budget constraint
of B, the naive greedy algorithm will make no improvement to the delay even though
upgrading v2 would decrease it to an arbitrarily small ε > 0.

3.3 An Iterative Greedy Algorithm

Further improvement on the naive greedy algorithm can be gained by considering
nodes that are not considered by the naive greedy algorithm. After pruning and
eliminating the nodes that could never improve the delay for any terminal pair
(as described earlier in Section 3.1), we again assign a heuristic value to each
eligible node. Here, we redefine a node’s value to be the change in the average
shortest path delay if we were to upgrade that one node, divided by its cost.
The new greedy algorithm iteratively upgrades the node with the highest value
and recomputes the remaining nodes’ values before upgrading the next node.
After the algorithm exhausts the budget, it is possible that some of the nodes
it chose to upgrade no longer improve the solution. As such, it removes these
unnecessary nodes from the solution and starts over again but with the current



set of upgraded nodes and the leftover budget. We can repeat this process until
there is no longer any improvement made on the objective function, or we can
set a limit to the number of times that this is run. We will call this the Iterative
Greedy algorithm, and more detailed pseudocode is outlined in Algorithm 1.

Algorithm 1: The Iterative Greedy Algorithm

Input: input of the USP instance, a parameter NumIters, and the subroutines
– CalcShPaths(G, T , d, d′, V’): shortest path delays from the nodes t ∈ T to all

other nodes v ∈ V assuming the nodes in V’ have been upgraded
– CalcAvgDelay(pathDists, P): average delay for pairs in P
– CalcImpr(pathDists, P , v): improvement in average delay for P if v is upgraded

Output: A set V’ ⊆ V to upgrade
1 V’ ← ∅
2 spent ← 0
3 for i← 1 to NumIters do
4 Q ← V− V’
5 pathDists ← CalcShPaths(G, T , d, d′, V’)
6 startAvgSP ← CalcAvgDelay(pathDists, P)

7 while Q �= ∅ do
8 foreach v ∈ Q do
9 if spent+ c(v) ≤ B then value(v) ← CalcImpr(pathDists,P ,v)/c(v)

10 else Q ← Q− {v}
11 if Q �= ∅ then
12 Let v ∈ Q be the node for which value(v) is maximum
13 V’ ← V’+ {v}
14 Q ← Q− {v}
15 spent ← spent+ c(v)
16 pathDists ← CalcShPaths(G, T , d, d′, V’)
17 deleted ← false
18 avgSP ← CalcAvgDelay(pathDists, P)

19 foreach v ∈ V’ do
20 if avgSP = CalcAvgDelay(CalcShPaths(G, T , d, d′, V’− {v}), P)

then
21 V’← V’− {v}
22 spent ← spent− c(v)
23 deleted ← true

24 if deleted = false or avgSP = startAvgSP then return V’

25 return V’

The time complexity of this greedy algorithm is dominated by calls to the
function CalcShPaths(). Calculating single-source shortest paths for all of the
terminals is implemented by running Dijkstra’s algorithm |T | times using Fi-
bonacci heaps, which takes a total of O(|T |(|E| + |V | log |V |)) time. In each
iteration of the greedy algorithm, i.e. each iteration of the for loop starting
at Line 3, this function is called O(|V ′|) times. Having computed the shortest



paths, the function CalcAvgDelay() takes O(|P |) time to look up the shortest
path delay for each terminal pair. The function CalcImpr() needs to calculate
the upgraded delays of the shortest paths that must pass through v. This can
be done in O(1) time for each terminal pair (for a total of O(|P |) time for the
function) by adding up the shortest path delays from the node v to the two
terminals, removing the delay d(v) from both paths, and adding the upgraded
delay d′(v). Since the running times of these other functions and the various
loops are all dominated by the running time of the shortest-paths computations,
the total running time for each iteration of the greedy algorithm can be bounded
above by O(|V ||T |(|E|+ |V | log |V |)).

In terms of performance guarantees, this greedy algorithm can also per-
form arbitrarily poorly. Greedy algorithms occasionally have provable guar-
antees in some problems such as maximizing submodular functions [6, 12, 14].
Submodular functions capture settings where the payoff for choosing some set
of items exhibits diminishing returns, i.e. they are functions f that satisfy
f(A ∪ B) ≤ f(A) + f(B) − f(A ∩ B). In a recent result, Lin and Bilmes [12]
show that it is possible to use a modification of our iterative greedy approach to
get a constant approximation when maximizing a submodular function subject
to a budget constraint. Their algorithm takes the better of the two solutions
of a) performing the greedy algorithm and b) choosing the single element x for
which c(x) ≤ B and f(x) is maximized. Unfortunately, their small modification
fails to work here because the budget-constrained USP problem, when posed as
a maximization problem under the choice of V ′, is not submodular. We give an
example in Figure 3. Buying either of the nodes v1 or v2 alone does not decrease
the shortest path length, but buying both of them decreases it by 1 (and is in
fact the optimal solution). The iterative greedy algorithm would preferentially
add nodes that immediately improve the objective function, so it would choose
v3 and use up the entire budget in the process. Choosing the one element that
improves the objective the most also gives the same result. Since this is only
an improvement of ε to the optimal improvement of 1, the performance of the
greedy algorithm can be made arbitrarily worse by setting ε to be an arbitrarily
small but positive value.

s t

v1 v2

v3

c(v1) =
B
2 c(v2) =

B
2

d(v1) = 1 d(v2) = 1
d′(v1) = 0 d′(v2) = 0

c(v3) = B
d(v3) = 1
d′(v3) = 1− ε

Fig. 3. In this example, there is one terminal pair p = (s, t), and the initial shortest
path length is 1 via node v3. Under a budget constraint of B, the greedy algorithm
ignores both nodes v1 and v2 in favor of v3.



4 Experimental Results

We implemented and tested the greedy algorithms against the exact solution
provided by using a MIP solver. To test these algorithms, we created synthetic
problem instances on square grid graphs. The initial delay and cost of each
node was chosen uniformly at random from the range [50, 1000]. Three terminal
pairs were chosen from a set of four randomly chosen terminals (two set in
opposite corners of the graph) by taking the edges in the all-pairs shortest-paths
minimum spanning tree on the terminals. Three approaches were used to model
the upgraded delay function:

scaled Each upgraded delay value is some scalar factor times the original delay
value, i.e. d′(v) = cd(v) for some c ∈ [0, 1].

constant Each upgraded delay is equal to the same constant 50.
tiered For nodes with delay value d(v) in the range (500, 1000), the upgraded

delay value is 500, and those with d(v) in the range [100, 500], d′(v) is set
to 75.

We first tested the performance of solving the MIP encoding exactly by
using IBM ILOG CPLEX 11 on 100 instances of 20 by 20 grid graphs (400
nodes) with pruning as described earlier. We varied the budget value B between
0 and Bmax, the total budget necessary to achieve the shortest possible delays.
Each value Bmax is specific to the instance and is calculated by solving the
budget minimization MIP. As shown in Figure 4a, the problem exhibits easy-
hard-easy behavior as the budget is increased. It is notable on these instances
that the easy-hard-easy trend is most pronounced for the constant model and
the scaled model for c = 0.1. As a general trend, instances where the change
in node delays are larger and vary a great deal are harder than instances where
the new node delays represent very little change. The MIP scaled surprisingly
well for larger grid graphs, as can be seen in Figure 4b.

4.1 Greedy Algorithm Performance

The naive greedy algorithm does not always perform very well, though it some-
times outperforms the iterative greedy algorithm when the budget nears Bmax.
The iterative greedy algorithm performed very well on these randomly generated
instances. Both the median and mean performance of the algorithm on 100 sam-
ples were within 5% of optimal for all of the upgraded delay models. As expected,
there were occasionally instances where the algorithm did poorly, though given
the nature of our synthetic instances, this did not occur for many instances, nor
was the result ever found to be worse than 60% of optimal. Figure 5 shows the
average and worst case performances of the greedy algorithm on our data set.

By the heuristic nature of the greedy algorithms, both of the greedy im-
plementations were very fast. In our experiments, the naive greedy algorithm
finished in at most 0.02 seconds, and the iterative greedy algorithm finished in
at most 0.5 seconds.
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Fig. 4. (a) Median MIP running times for different upgraded delay models on 100
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times for different grid graph sizes under the constant upgraded delay model.
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Fig. 5. The worst and median performances of the greedy algorithms are given from
running on 100 instances of 20x20 grid graphs on two of the upgraded delay models.



4.2 Results on Grizzly Bear Data

We apply our solution approaches to data derived from a real conservation set-
ting. We use the data for the grizzly bear corridor design problem studied in [2].
The goal in this work was to ensure connectivity between three major national
conservation parks with existing grizzly populations. The data was compiled by
Dr. Jordan Suter and is given in terms of habitat suitability, or utility, values
and costs for different land parcels in the geographical area surrounding the
three wildlife reserves. For each land parcel, we generated landscape resistance
values that were inversely correlated with their utility values. In many ecological
studies, habitat suitability and resistance are treated as complementary values.
Hence, we compute the resistance of nodes on the same scale as the utilities
resist(v) = minu∈V util(u) + maxu∈V util(u)− util(v).

At a 10 by 10 km pixel resolution, the resulting network has 3299 parcels
(nodes) and 3 terminal pairs (connecting the three reserves). We solved the 10km
grizzly instance for different resistance models for both the budget-constrained
and delay-constrained formulations. Figure 6 presents results from the scaled
model for c = 0.1. The other resistance models behaved qualitatively similarly,
although this was the most computationally demanding setting for the MIP
formulation. The graph on the left plots the Pareto frontier between cost and
delay, i.e. the tradeoff curve of improvement in average terminal pair delay as we
increase the budget allowed for upgrades. Such analysis can provide important
insight for conservation planning as a small fraction of the maximum budget is
enough to achieve more than half of the connectivity improvement. The graph on
the right plots the computation time versus the normalized constraint for both
constrained variants of the problem. For all resistance models, the minimum
cost delay-constrained problem usually required more time to solve to optimality
than the minimum delay budget-constrained variant. While the wildlife corridor
design problem cannot be solved to optimality within hours for this instance [5],
the respective Upgrading Shortest Paths problem on the same graph is solvable
to optimality in a practical time frame.

5 Conclusions and Future Work

In this paper, we introduced the USP problem, a new NP-hard combinatorial
problem for improving network connectivity in real-world applications. We also
provided a MIP formulation that scaled very well with the size of the graph.
This was a surprisingly positive result given the bad scaling behavior of MIP
formulations for many other combinatorial network design problems. This is also
a very practical result because in the context of conservation planning, problem
instances are usually quite large, on the order of thousands of nodes. The greedy
algorithms provided very high quality solutions in practice and can be used for
extremely large instances.

The introduction of the USP problem also opens up several interesting open
problems. Our greedy algorithms perform well but can do arbitrarily poorly.
An open research direction is to design approximation algorithms with provable
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Fig. 6. Results for the 10km grizzly instance for the scaled 0.1 resistance model. Left
plot shows the tradeoff between the cost spend and the improvement in delay achieved
by the optimal as well as the iterative greedy solutions. Right plot shows the running
time of both the budget-constrained and delay-constrained formulations as a function
of the tightness of the respective constraint.

performance guarantees. It would also be interesting to study exactly why this
MIP scales so well as compared to other combinatorial network design problems.
In the context of conservation planning, our model can also be generalized to
capture other features such as multiple species of wildlife that have different
resistance values for the same land parcel. We can also study the generalized
model where each node can have different upgraded delay values available at
different costs. This would model more fine-tuned applications where there is a
discrete spectrum of actions that can be taken to decrease the inherent delay or
resistance of a node.
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